NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE No. 1161 EFFECT OF CATALYSTS AND pH ON STRENGTH OF RESIN-BONDED PLYWOOD By G. M. Kline, F. W. Reinhart, R. C. Rinker and N. J. De Lollis National Bureau of Standards #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### TECHNICAL NOTE NO. 1161 EFFECT OF CATALYSTS AND DH ON STRENGTH OF RESIN-BONDED PLYWOOD By G. M. Kline, F. W. Reinhart, R. C. Rinker, and N. J. De Lollis #### SUMMARY The effects of various catalysts used to cure the resinous adhesives on the strength properties of plywood was investigated, particular with regard to the degree of acidity developed by the catalysts in the resin film and in the plywood. The flexural, impact, and shear strengths, both initially and after aging, of birch plywoods bonded with urea-formaldehyde and phenol-formaldehyde resins definitely decrease as the acidity of the plywood increases, as evidenced by a decrease in pH. Only in the case of plywood bonded with casein and urea-formaldehyde resins had the deterioration at the bond progressed sufficiently in the roof-aging tests to make it impossible to carry out strength tests because of delamination. A correlation between decrease in strength on aging of plywood bonded with alkali-catalyzed phenolic acid and increase in alkalinity of the panel was observed. Because of the different absorption capacities of the phenolic resus for acids and alkalies, it is not possible to predict the pH of the plywood panel from the pH of the resin film. The susceptibility of birch wood, itself, to attack by acids and alkalies was determined in order better to understand the mechanism of the deterioration of resin-bonded plywood. A marked decrease in strength occurred when the pH of the wood was lowered below 2.0. In the range between pH 2.0 and 2.5, strong acids, such as hydrochloric and sulfuric, had a more pronounced deteriorating effect than weak acids, such as hypophosphorous and nitranilic. A marked decrease in strength of the birch also occurred when the pH was raised to 8.8 by the absorption of an alkali, tetraethanolammonium hydroxide. #### INTRODUCTION The increased use of resin-bonded plywood for structural parts of aircraft has made it necessary to determine the effect of various chemical properties of the resins on the strength properties of the resin bonds. Information of this nature is needed to utilize the materials properly in building satisfactory aircraft and to evaluate the causes of failure. Determination of the effect of acid and alkaline catalysts on the strength and eging properties of various types of resin bonds is one important phase of this work. This report presents the results of an investigation which was made to determine these relationships. Some of the data obtained in the early stages of the work were included in a preliminary report issued in 1943 (reference 1). The degree of acidity or hydrogen ion concentration can conveniently be reported as a pH value which approximately is the logarithm of the reciprocal of the gram ionic hydrogen equivalents per liter; that is, pH = log 1/H⁺ per liter. Water has a concentration of H⁺ ion of 10⁻⁷ and of OH ion of 10⁻⁷ moles per liter or a pH value of 7, and is said to be neutral in reaction. The presence of an acid in a vater solution increases the concentration of hydrogen ions. Hence the concentration of hydrogen ions in an acid solution becomes 10⁻⁸ or 10⁻⁵, or greater, and the pH value is less than 7. The presence of an alkali in a water solution increases the concentration of hydroxyl ions and decreases that of the hydrogen ions. Hence the concentration of hydrogen ions in an alkaline solution becomes 10⁻⁸, 10⁻⁹, or less, and the pH value is greater than 7. The product of the hydrogen ion concentration and the hydroxyl ion concentration is always equal to 10⁻¹⁴ in aqueous medium at 25° C. The pH value has been used throughout this report to indicate the degree of acidity of the various specimens. The two most commonly used types of bending agents in the manufacture of resin-bended plywood are the phenol-fermaldehyde and the ureaformaldehyde resins. Both types are cured either by the "hot-set" or the "cold-set" method. Since the demarcation between cold-set and hot-set bending resins has not been definitely established in the industry, the resins used in this project were classified according to the temperature required to cure the resin in a commercially practical period of time, as follows: - Class R. These resins do not require a higher degree of heat for curing than that available at ordinary room or factory conditions. - Class M. These resins require a degree of heat greater than that available at room or factory conditions, but not over 160° F (71° C). - Class H. These resins require a temperature greater than 160° F $(71^{\circ}$ C). In order to obtain a satisfactory degree of cure of class R and some class M resins, it is necessary with most of the commercial resins NACA TN No. 1161 to use very active catalysts. One of the most active catalysts for curing these types of resins is the hydrogen ion which is usually expressed in terms of pH units when the concentration is less than one molar. It is an established fact that wood deteriorates rapidly in acidic media. It is also known that urea-formaldehyde resins are not so resistant to acid conditions as are phenolic resins (see references 2 to 7). The work reported herein was designed to determine the effects of various catalysts and the pH of the resin bend on the strength properties of the resin-wood composite since the failures may be in the resin, in the wood, or in both resin and wood. It should be noted, however, that the acid conditions in the resin-bonded birch panels tested are attributable to the ingredients in the resin-glue mixtures and not to the wood or any extraneous source. This investigation, conducted at the National Bureau of Standards, was sponsored by and conducted with the financial assistance of the National Advisory Committee for Aeronautics. The authors wish to acknowledge the assistance given by Mr. B. M. Axilrod, Miss M. C. Fordney, Mrs. M. S. Zeller, Miss D. C. Caudill, and Miss N. W. Rucker in supplying some of the data herein reported. #### MATERIALS A group of adhesives which are being used to a great extent in the manufacture of resin-bonded plywcod aircraft was selected for this work. These included urea-formaldehyde, phenol-formaldehyde, resorcinol-formaldehyde, furane, and unsaturated polyester resins and casein. The commercial designations and the manufacturers of the resins, and the classification of the various resins and resin-catalyst mixtures on the basis of the temperature required for curing, are given in table I. Birch wood was used in the tests because it is the type most commonly employed in the manufacture of aircraft grade plywood in this country. Other woods were not investigated inasmuch as the primary objective of the investigation was the study of deteriorative effects characteristic of various resin-catalyst systems. The test panels were made with sliced birch veneers carefully selected for straightness of grain and having an average thickness of 0.01 inch. The thin veneers were used to obtain a higher resin content than that normally used in aircraft plywood. Since the acidic conditions result from the resin, a high resin content would be expected to magnify the effect of the pH on the strength properties of the composite. For the tests of the effect of the catalysts on the wood alone, sliced birch veneers 0.1 inch in thickness and specially selected for straightness of grain were used. #### PREPARATION OF TEST PANELS The resin glues were prepared according to directions received from the manufacturers and were applied to the birch veneers by means of rollers. This method produced resin films of uniform thickness on both sides of the veneers. The veneers coated with the class H resins were suspended from a drying rack and allowed to dry about 20 hours before assembling and pressing. The veneers coated with the class R and class M resins were assembled and pressed immediately after coating. Each panel consisted of 8 birch veneers arranged with the grain of plies 1, 3, 6, and 8 parallel to one another and with the grain of plies 2, 4, 5, and 7 perpendicular to the face plies. In the early stages of the investigation the test panels were pressed at approximately 100 pounds per square inch, but this produced panels varying considerably in thickness and density. In order to obtain more uniform panels, stops 9 by 1 inch for use between the press platens were ground to a thickness of 0.075 ± 0.001 inch and the platens were ground to a flatness of 0.0001 inch. A load of 10 tens was applied to the platens. The birch vaneers used in each panel were conditioned by storage at 77° F (25° C) and 50 percent relative humidity, and were weighed before the resin coating was applied. The completed test panel was also conditioned and weighed. The resin content of the test panel was then calculated by means of the following equation: Resin content in percent = Weight of test panel - Weight of conditioned veneers × 100 Weight of test panel Three panel were prepared with each resin or resin-catalyst mixture. The conditions used to cure the panels, the average densities, and the average resin contents are given in table I. #### TESTING PROCEDURES # Aging Each test panel was cut into quarters and treated as follows: - 1. One quarter section was not subjected to any aging treatment. - 2. One quarter section was exposed continuously in Washington, D. C., (on the roof of the Industrial Building, National Bureau of Standards) on racks at an angle of 45° facing south for 1 year unless otherwise noted. - 3. One quarter section was heated in a forced-draft oven at 176° F (80° C) for 40 hours. - 4. One quarter section was subjected to a continuous oven-fcg cyclic accelerated aging test. The cycle in this test
consisted of the following: | Exposure
Pericd
(hr) | Tempera
(OF) | ature | Relative
Eumidity
(percent) | Apparatus | |----------------------------|-----------------|-------|-----------------------------------|-------------------| | 2 | 77 | 25 | 100 | Fog cabinet | | 2 | 149 | 65 | 5 | Forced-draft oven | | 2 | 77 | 25 | 100 | Fcg cabinet | | 18 | 149 | 65 · | 5 | Forced-draft oven | The sections were exposed for a total of 200 hours in the oven and 40 hours in the fog cabinet. This latter test is a modification of the accelerated weathering test described in Federal Specification I-P-406a, Method No. 6021. Heating in an oven at 149° F (65° C) was substituted for the irradiation under the sun lamp prescribed in Method No. 6021 because the effect of the ultraviolet light would be expected to be negligible in the breakdown of the resin layer in plywood. The temperature to which the specimens are exposed is approximately 149° F (65° C) in both tests. The data in table II show that the decreases in flexural strength resulting from exposure of plywood specimens to the two tests, respectively, are practically identical. # Determination of pH A thin film of the resins of class R and class M was cast on glass and allowed to dry for 20 hours at a temperature of 70° to 79° F (21° to 26° C). The resin film was then removed from the glass and ground to a fineness of 40 mesh. Two grams of the powdered resin were suspended in 10 milliliters of distilled water and the pH of the suspension was measure by means of a glass electrode after 15 minutes, and after 24, 48, 72, and 96 hours, or until the values were constant to within 0.05 pH unit. Films were prepared from the class H resins by casting them upon a glass plate, using a knife blade to remove excess resin and make the thickness of the ceating 0.02 inch or less. The cast films were placed in a circulating air oven at 149° F (65° C) until examination showed that most of the solvent had evaporated; this process required about 4 hours except in the case of Plaskon 107, which was cured after 3 hours at 149° F (65° C) and was not subjected to any further heating. This drying was followed by a cure in the oven at 300° F (149° C) until the films were hard and brittle, the latter operation requiring about 30 minutes. The hard, brittle films were pulverized in a small rock-crushing mortar and passed through a 40-mesh screen. The pH values of the powdered films were measured in the same manner as those of the class R and the class M films. The acidity of the test panels was determined by grinding a portion of the panel to 40 mesh in a Wiley mill and suspending 1 gram of the powder in 5 milliliters of distilled water. The pH values of the water suspensions were usually constant after 48 hours. The pH of the distilled water used in making the resin suspensions was 6.3. A few of the resin films and powered panels were also suspended in dilute hydrochloric acid solution of pH 4 .5. The pH values of the acid suspensions are reported in table II and do not differ appreciably from those of the water suspensions. All the pH measurements were made at a temperature of 77° F (25° C) with a glass electrode. The measurements reported are accurate to ± 0.05 pH unit. # Strength Properties The test specimens for determining the strength properties were cut from the quarter sections after the aging treatments. The specimens were machined and then conditioned at 77° F (25° C) and 50 percent relative humidity for at least 48 hours prior to testing. All the tests were made at 77° F (25° C) and 50 percent relative humidity. The flexural modulus of elasticity was measured on an Olsen Stiffness Tester, Tour-Marshall design. Specimens 5 inches long and 0.5 inch wide NACA TN No. 1161 7 were cut from the panels. Two measurements were made on each specimen, one on each end. The test span was 2 inches long; the total bending moment applied to the specimen was 3 inch-pounds. The angular deflections were plotted against the bending moments and the deflection at a stress of 2500 pounds per square inch was determined from the curve. This stress was selected because the plots for all the samples were essentially straight lines up to that stress. The secant modulus of elasticity in flexure then was calculated from the approximate expression $$E = \frac{229.2 \text{ PL}^2}{D \text{ a h}^5} \tag{1}$$ where E modulus of elasticity in flexure P load L length of beam D deflection, degrees a width of beam h thickness of beam This expression was derived from the formula for the deflection of a cantilever beam with a concentrated load at one end. The flexural strength was measured on specimens 1.0 inch long and 0.75 inch wide cut from the panels. The specimen was supported on two parallel supports with a span of 5/8 inch. The load was applied at the center of the span by a pressure piece similar to the supports. The edges of the support pieces and of the pressure piece were rounded to 1/8-inch radius. The tests were made on a hydraulic testing machine with a head speed of 0.05 inch per minute. The machine was accurate to 2 percent of the lowest applied load. The flexural strength or modulus of rupture is calculated from the expression $$F = \frac{3PL}{2ah^2} \tag{2}$$ where F is flexural strength and the other symbols have the same significance as in equation (1). The impact tests were made on an Izod impact machine of 2 fcct-pounds capacity. Specimens 2.5 inches long and 0.5 inch wide were cut from the panels. The tensile tests were made according to Method No. 1011 of Federal Specification L-P-406. Type 1 specimens were used; the width of the reduced section was 0.5 inch. The tests were made on a hydraulic testing machine with self-alining Templin grips. The rate of head speed was 0.05-inch per minute. Shear specimens 4 inches long and 0.75 inch wide were cut from the panels. A groove 1/8 inch wide and extending through approximately 4½ veneers was milled on one face of the panel parallel to the 0.75-inch dimension. A similar groove was milled on the opposite face. The grooves on the specimens used in the preliminary tests were 1/2 inch apart, but, since many tensile failures were obtained, the distance between the grooves was reduced to 1/4 inch on the later specimens. The specimens were broken on a hydraulic testing machine at a rate of leading of 200 pounds per square inch per minute. #### Delamination One strip 0.5 inch wide cut from each quarter section of each test panel was subjected to a delamination test. The strips were placed in individual 3- by 20-centimeter test tubes which contained distilled water previously heated to the boiling point by immersion of the tubes in a water bath. The tubes containing the test strips were left in the bath of boiling water for 1 hour. On removal from the test tubes the specimens were immersed in water at 77° F (25° C) for 15 minutes and then dried at 140° F (60° C) in a forced-draft oven for 22 hours. This procedure constituted one cycle of the test. At the end of each cycle the test specimens were bent over a mandrel of 8-inch radius. After five cycles the specimens were bent over a 4-inch-radius mandrel. Observations regarding delamination were made. #### Density Density was determined by weighing and measuring machined specimens. #### RESULTS OF TESTS A preliminary investigation was made to obtain data for use in selecting the strength properties to be measured on all the test panels. Six panels were prepared with a phenol-formaldehyde resin (Tego film) NACA TN No. 1161 9 and six with a urea-formaldehyde resin (Uformite 430 catalyzed with 10 percent ammonium chloride). These two materials were selected to determine the effects of high and low pH conditions, respectively. Specimens from each panel were tested unaged and after exposure to three aging tests. The strength properties measured in these preliminary tests were flexural modulus of elasticity, and flexural, impact, tensile, and shear strengths. The changes in these strength properties as a result of exposure to the aging conditions are given in table III. On the basis of the results obtained in these preliminary tests, the size of the test specimens required, and an analysis of the stresses in the various tests, it was decided to employ the flexural, impact, and shear strengths for detecting the deterioration of the resin-bonded birch plywoods. The detailed results of these tests are presented in tables IV, V, and VI and figures 5 to 12. The behavior of the materials with respect to delamination is shown in table VII. A summary of the effects of the catalysts on the strength properties of the panels bonded with ureaformaldehyde and phenol-formaldehyde resins is given in table VIII. The specific effects of various acid and basic radicals present in catalysts used with phenolic resinous adhesives in the preparation of plywood were determined in a series of tests with known compounds. Panels were prepared with a resorcinol-formaldehyde resin (Penacolite G-1131) to which were added varying amounts of hydrochloric, nitric, sulfuric, phosphoric, hypophosphorous, trichloroacetic, benzenesulfonic, and nitranilic acids and sodium hydroxide. Titration curves of the resin with these acids and base are shown in figures 1 to 3. The flexural strengths of these panels, unaged and oven-fog-aged, are presented in table IX. Similar experiments were performed with two phenol-formaldehyde resins. The titration curves obtained for one of these resins (Cascophen LT-67) with the acids and base are shown in figures 3 and 4. The results of the strength tests are given in table X. In a further series of tests to determine the specific effect of the acid radicals present in commercial catalysts for resinous adhesives, three commercial catalysts were used, respectively, with three phenolic resins to prepare plywood panels. Four panels were prepared with each resin — one without catalyst, and one with
each of the three catalysts, respectively. Only one of the resin—catalyst mixtures failed to cure satisfactorily at 150° F (66° C). The flexural strengths of these panels were determined before and after aging. The results of these tests are presented in table XI. Data are also given in table XI for one of the resin—catalyst mixtures in which the catalyst percentage was varied from 5 to 45 percent. Proper interpretation of the data obtained in these experiments on the effects of various acid and alkaline catalysts on the strength of resin-bonded plywood required information on the effects of these chemicals on the wood itself. Accordingly, birch veneers of 0.1—inch thickness were immersed for 3 days in various concentrations of the same acids and alkalies used in the tests with the resins. The results of flexural strength measurements on the conditioned wood specimens are shown in table XII. #### DISCUSSION OF RESULTS # Tests of Industrial Adhesives Use of the various commercial resins with their catalysts selected for this investigation resulted in pH values for birch plywood ranging from 1.7 to 8.4. (See table I.) The ranges of pH for the test panels made from the various resins were as follows: Urea-formaldehyde, 1.9 to 5.7; phenol-formaldehyde, 1.7 to 8.4; resorcinol-formaldehyde, 4.8 to 6.3; and unsaturated polyester resins, 3.2 to 5.7. The pH values of birch plywood were not affected by moderate baking or by exposure to cycles of heat and fog. This indicated that the acidic compounds determining the pH of the composite did not escape readily from the structure or did not react with the tirch or its decomposition products in such a way that they lost their chemical identity. It would seem reasonable, therefore, to assume that the deterioration caused by pH would continue until failure occurred. The results of the 240-hour oven-fog-aging test are in qualitative agreement with the results of the 1-year roof-aging test. An analysis of the data indicates that no quantitative statements can be made concerning the agreement. However, the 1-year roof-aging test was usually, but not always, more severe than the 240-hour oven-fog-aging test. The effects of pH on the strength of the plywood prepared with the various commercial types of resins can best be reviewed by discussing the resins in three groups: urea, phenolic, and other resins. # (a) Urea Resins The flexural, impact, and shear strengths of the urea-formaldehyde resin-bonded birch plywood depended markedly on the pH of the composite. This is shown by the data in tables IV, V, and VI and graphically in figures 5, 6, and 7. NACA TN No. 1161 The failure of the urea-formaldehyde resin-bonded materials in the delamination test is also affected by the pH of the plywcod. The critical pH value in this test appears to be between 3.8 and 4.6 for both the unaged and the aged specimens. Three of the panels with a low pH delaminated during exposure. This indicates that the loss in strength on roof aging can be attributed to both deterioration of the wood and deterioration of the resin. # (b) Phenolic Resins An examination of the values in table VIII for the flexural, impact, and shear strengths of the phenolic resin-bonded panels shows that the presence of acid catalyst causes a decrease in these properties in the unaged panels in every case. This decrease was noticed especially with the panels prepared with the Catabond resins 590 and 200-CZ, wherein concentrated hydrochloric acid catalysts were used. It is well known that hydrochloric acid has a decidedly deleterious effect on most woods. No failure of the phenolic resin-bonded composites occurred in the delamination test. The unaged and laboratory-aged specimens with pH values of 3.1 or less were brittle in the final flexibility test on the 4-inch mandrel. With one exception, those with pH values of 3.6 or more were flexible throughout this test. # (c) Other Resins The remaining adhesives tested, which included resorcinol, furane, casein, and unsaturated polyester types, produced panels of pH 3.2 or greater, with the exception of the furane resin panel which had a pH of 2.2. These adhesives did not undergo marked deterioration in strength when subjected to the laboratory-aging tests. The pronounced reduction in strength which occurred under roof-aging conditions is attributable mainly to deterioration of the uncoated wood. However, the strengths of the roof-aged panels made with these resins were markedly inferior to those of the roof-aged panel made with the best phenol-formaldehyde resins. It is significant that, in the roof-aging tests conducted as part of this investigation, only in the case of the casein and some urea-formaldehyde glues had the breakdown at the bond progressed sufficiently to make strength tests on the roof-aged panels impossible. Effect of Acidic and Basic Catalysts on Strength of Plywood The outstanding feature of the experiments in which various acids and alkalies were added to the resorcinol-formaldehyde and phenol-formaldehyde resins (figs. 1 to 4) was their apparent absorption by the resin. Although relatively large amounts of the catalysts were added to produce resin solutions of low pH, the resin films and plywood panels had pH values considerably higher than those of their respective solutions. The titration curves show that there is a definite chemical neutralization reaction between the phenolic type resins and acid and alkali, respectively. The amount of acid or acid-generating catalysts added to cure this type of resinous adhesive at room temperatures is generally greater than the neutral equivalent of the resin. Since this additional acid is not destroyed or is only loosely bound to the resin, it is free to cause deterioration of the materials in the structure. The flexural strengths of the unaged panels made with the resorcinol-formaldehyde resin (table IX) did not undergo a significant decrease with increasing acidity of the resin solution. However, the oven-fog-aging conditions brought about a substantial reduction in strength which correlated with decrease in pH. Thus, although the pH of the unaged panels in many instances appeared to be beyond the critical acid range, the acid which had been absorbed by the resin was available to bring about deterioration of the panel under the aging conditions (fig. 8). The strong acids, such as hydrochloric, nitric, and sulfuric acids, had only slightly more deteriorating action than the weaker types, such as nitranilic and hypophosphorous acids (fig. 9). An attempt was made to treat a phenol-formaldehyde resin, Cascophen LT-67, with the same series of acids used in the experiments with the rescreinol-formaldehyde resin. However, in the presence of hydrochloric, nitric, sulfuric, phosphoric, and nitranilic acids, the resin precipitated from solutions. The results obtained with the weaker acids (table X and figs. 3, 4, 10, and 11) were comparable to those obtained with these same acids added to the resorcinol resin. When hypophosphorous acid was added to the resin solution in amounts sufficient to lower the pH of the plywood panel prepared with it to 2.2, a considerable decrease in flexural strength occurred in the oven-fog-aging tests. A similar effect was observed with another phenol-formaldehyde resin, Durez 12041. It is noteworthy that the flexural strengths of the uraged panels prepared with the phenol-formaldehyde resins were, in general, slightly higher than those of the resorcinol-formaldehyde panels. The Cascophen LT-67 resin was also treated with various amounts of sodium hydroxide, a strong base. No evidence of significant deterioration in strength of the unaged plywood by relatively large amounts of the alkali was noted. However, there was some decrease in strength when the plywood was exposed to oven-fog-aging conditions. The decrease in strength correlated with increase in pH from an initial value of 6.4 for NACA TN No. 1161 the aged panel without added alkali to 8.2 for the aged panel with the greatest amount of added alkali. Attempts were made to cure ureaformaldehyde resin adhesives at high pH values by the addition of alkali but were unsuccessful. In general, the results shown in table XI and figures 12 and 13 for tests made with various commercial catalysts and resins show a correlation between the strength of the plywood and the pH of the unaged panels. The pH of the resin films prepared with these commercial resins, using the recommended amounts of the catalysts, were all less than 2.0 and it was not possible to predict from these values what the pH of the plywood panel would be. This is shown graphically in figure 13; similar graphs can be plotted from the other data in table XI. #### Effect of Acids and Bases on Wood The marked decrease in strength of the unaged plywood panels which resulted generally throughout the experiments reported herein when the pH of the panels was lowered by acid catalysts indicated that the wood was being attacked by the acids. The data in table XII and figure 14 indicate that both pH and catalyst radical have a part in this breakdown. Hydrochloric, benzenesulfonic, nitric, and sulfuric acids had the most pronounced deteriorating effect on the birch wood. Nitranilic and hypophosphorous acids had considerably less deteriorating action on the wood. This is particularly evident from a comparison of strengths for the birch veneers treated with the respective acids to produce pH conditions in the range 2.1 to 2.4. A marked decrease in strength occurred in every case when the pH of the birch veneers was lowered below pH 2.0 by treatment with the respective acids. The wood had a strong buffering action against alkalies. However, a pronounced decrease in strength occurred when the pH of the wood was raised to 8.8 by absorption of tetraethanolammonium hydroxide. #### CONCLUSIONS The flexural, impact, and shear strengths, both initially and after aging, of urea and phenolic resin-bonded birch
plywoods are definitely affected by the pH. In the acid range, the lower the pH of the plywood panel, the poorer is the strength of the panel and its resistance to aging. The lower critical pH value, below which optimum strengths are not obtained and deterioration upon aging becomes appreciable, is approximately 4 for urea resin-bonded plywoods and 3.5 for phenolic resinbonded plywoods. The decrease in strength on aging of birch plywood bonded with a phenolic resin catalyzed with a streng alkali (sodium hydrexide) correlated with increase in pH of the plywood. The upper critical pH values, above which optimum strengths are not obtained and detericration upon aging becomes appreciable, appears to be in the neighborhood of 8 for phenolic resins; the value for urea resin-bonded plywoods was not established because the resins would not cure at the high pH values. The delamination of birch plywoods made with urea-formalishyde resins is affected by the pH; in the acid range, the lower the pH, the fewer cycles required for delamination to occur. The delamination of birch plywoods made with phenolic resin is not affected by the pH; when the pH is less than 3.1, the materials are not ac flexible as those with pH values of 3.6 or more. In 1-year roof-aging tests delamination occurred only in the case of plywood bonded with casein and with urea-formaldehyde resins containing acid catalysts which reduced the pH of the unaged panel to 3.4 or less. At a given pH, strong acids, such as hydrochloric, nitric, and sulfuric acids, had only slightly greater deteriorating action on rescorcinol-formaldehyde resin-bonded birch plywood than did the weaker types, such as hypophosphorous and nitranilic acids. The pH values of the birch plywoods made with various resins are not markedly changed by moderate heating (40 hr at 80°C), by exposure to cycles of heat and fog or by exposure outdoors for 1 year. Both pH and the nature of the acid redical have an effect on the deterioration of birch wood by acids. At a given pH weak acids have considerably less deteriorating action on the wood than do strong acids. A pronounced decrease in strength of birch wood occurred when the pH of birch wood was raised to 8.8 by absorption of tetraethanolarmonium hydroxide. National Bureau of Standards, Washington, D. C., August 30, 1946. NACA TN No. 1161 15 #### REFERENCES 1. Rinker, R. C., Reinhart, F. W., and Kline, G. M.: Effect of pH on Strength of Resin Bonds. Wartime Rep. W-46 (orginally issued as NACA ARR, Oct. 1943). - 2. Campbell, W. G.: Chemical Factors Involved in the Gluing of Wood with Cold-Setting Urea-Formaldehyde Resins. Jour. Soc. Chem. Ind., vol. 61, 1942, pp. 161-162. - 3. Campbell, W. G., and Packman, D. F.: Chemical Factors Involved in the Gluing of Wood with Cold-Setting Urea-Formaldehyde Resins. Second Rep. Effects Induced by Cold-Setting Urea-Formaldehyde Glues on the Physical Properties of Wood in Wood-Glue Composites. M.A.P. Sci. Tech. Memo. No. 11/43-F.P. 5, 1943. - 4. Campbell, W. G., and Bryant, S. A.: Chemical Factors Involved in the Gluing of Wood with Cold-Setting Urea Formaldehyde (U/F) Resins. Third Rep. A Consideration of the Causes of the Decline in Failing Load of Gap Joints during Prolonged Storage under Controlled Conditions. M.A.P. Sci. Tech. Memo. No. 9/44-F.P. 16, RIS. 9, 1944. - 5. Wangaard, F. F.: Summary of Information on the Durability of Aircraft Glues. Forest Prod. Lab. Rep. No. Mimeo. 1530, May 1944. - 6. Anon.: Synthetic-Resin Glues. Forest Prod. Lab. Rep. No. Mimeo. 1336, April 1945 (rev.). - 7. Dowling, Arthur P.: The Significance of pH in Glued Wood Joints. Naval Air Mat. Center Rep. No. TED NAM 2583, pt. V, June 21, 1944. #### TABLE I, DESCRIPTION OF BESIES AND RESIR-SOURCE STECK PARELS | | Commercial
Designation of
Resin | Hanuf ko kwar | Catalyst
Idded to
Rasin | Classi-
f <u>ication</u> s | lemper- | one of Cure
Time
(br:win) | Bensity,
Average
(g/cm2) | Resin
Content
of
Panels,
Average | Resin
Film | New Line | PA
Fonded
Dyen-
Aprel | Barch Ply
Over-Fog- | Roof-
Aged | | |----|--|---|---|---|--|---|--|---|--------------------------|--|-----------------------------------|---|---------------------------------|----------------| | Á. | Ures-Formaldehyde Rosi | pi a | | | | | | | | | | | | | | | Uformite \$30
Uformite \$50
Uformite \$50
Plaskon 201-2
0aseo 5
Plaskon 250-2
Plaskon 167
Uformite 500
Caseo 5
Uformite \$30 | Resimous Products and Chemical Co. Resimous Products and Chemical Co. Resimous Products and Chemical Co. Flaskon Div., Libbey-Owens-Ford Class Co. Casein Company of America Flaskon Div., Libbey-Owens-Ford Class Co. Flaskon Div., Libbey-Owens-Ford Class Co. Resimous Products and Chemical Co. Coscele Company of America Resimous Froducts and Chemical Co. | 10% Ammonium Chloride
10% 72°
10% 77°
25 ° 18°
100 rooms ted with regin
7% B-7
Home
Home | RABERREHERH | Room
Room
Room
Room
Room
300
300
300
300 | 24:00
24:00
24:00
24:00
24:00
24:00
0:15
0:30
0:6 | 0.91
0.94
0.93
1.02
0.86
0.96
0.98 | 77
40
77
77
77
77
77
77
77
77
77
77 | 1.66 P.4 0 R.57 | 12.46657-6 | 2,1 | 272224554 | 3.9
3.5
4.9
4.9
3.6 | | | В. | Ures-Resortinol-Formal | dehyde Resins | | | | | | | | | | | | J | | | Uformite 500
Plaskon 700-2 | Resinous Froducts and Chemical Co.
Plaskon Div., Libbey-Owens-Ford Class Co. | 201 0 107: 0.7% 0 87
16% Modifier | N
K4 | 150
(Room
150 | 3100
20:00)
3:00) | 0.99
0.96 | 35 | 1.5
1.5 | 5:1
4:6 | 4.6 | 4:8 | 4.0
4.1 | | | 0. | Phonol-Formuldehyde Res | sius | | | | | | | | | | | | ĺ | | | Dures 12041
Dures 11427
Catabond 590 | Durer Plastics and Chemicals, Inc.
Durer Plastics and Chemicals, Inc.
Catalin Corp. | 10% 7422
10% 7427
11% Hydrochloric meid (278%) | K
A |
150
150
(Noon
150 | 24:00
24:00
24:00)
1:00) | 0.97
1.94
0.90 | 36
37 | 1.4
1.4
1.6 | 1.6
1.6
1.7 | 1.5
1.5
2.0 | 1.9
1.9
2.3 | 2.6
2.6
3.1 | | | | Catabond 200 CZ | Catalin Corp. | 11% Mydrochloric soid (278%) | x | Room
(150 | 24:00)
1:00) | 0.91 | 37 | 1.6 | 1.8 | 2.1 | 2.4 | P.B | 24
20
21 | | | Bekelite 10-3931 | Bakalite Corp. | 3\$ XX-2997 | ¥ | (Room
150 | 21:00) | 0.90 | 31 | 1.9 | 2.7 | P. E | 3.0 | 3.3 | 2 | | 16 | Bakelite KC-11749 Catabond 590 Bakelite ED-3931 Bakelite ED-3931 Bakelite ED-11749 Catabond 200 OZ Cascophen LT-57 Durer 12041 Bakelite ED-17540 Tego Film Amberlite PR-14 | Behalite Corp. Catalin Corp. Bakelite Corp. Bakelite Corp. Catalin Corp. Catalin Corp. Casala Company of America Duror Plastics and Chemical, Inc. Bakelite Corp. Resinous Products and Chemical Co. Resinous Products and Chemical Co. | 454 XK-11753 Bons Home Home Home Som Home Joh Home 158 B0-17545 Home Innorporated with resin | R
H
H
H
H
H
H
H
H | 150
150
150
150
150
150
300
150
300 | 24:00
0:30
0:30
0:30
0:30
0:30
24:00
0:30
24:00
0:10 | 8.67
0.97
0.97
0.99
0.99
0.99
0.50
0.55 | name of the second | 1766678999 | ************************************** | 3.77.99.62.9
5.9
5.9
8.3 | 76597203 0 | | No. | | D. | Rescroinel-Formaldehyde | Resins | | | | | | | | | | | | 7 | | | Durez 19490
Pemecolite 0-1131
Bakelite X0-17613
Amberlite PB-75 B
Pemacolite G-1124
Durite 8-3026 | Durag Plastics and Chemicals, Inc.
Pennsylvania Coal Products Co.
Bakalite Corp.
Resimons Products and Chemical Co.
Pennsylvania Coal Products Co.
Durite Plastics, Inc. | 30% Formuldehyde (37%)
20% G-1131 B
20% KE-1618
20% KE-1618
20% P-79
P5% G-1144-B
16% 30264 | R
H
H
H
R | Room
150
150
Room
Room | 24:00
24:00
24:00
24:00
24:00
24:00 | 0.61
0.89
0.97
0.94
0.94 | 26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25 | 5.7
5.0
6.4
7.5 | 4.5
5.4
5.1
5.1 | 5.2 | 700 0 4 500
700 0 4 500
700 0 4 500 | \$.5 | | | E. | Phonol-Resorcingl-Form | aldohyde Resins | | | | | | | | | | | | | | | Dures 12533 | Durez Plastics and Chemicals, Inc. | 1001 12574 3 | H | 150 | 54:00 | 0.94 | 38 | 6.6 | 5.1 | 5.5 | 5.4 | 5.0 | - | | r. | Furane Recina | | | | | | | | | | | | | | | _ | Rosin I | Plantics Industries Technical Institute | 5% 7-1A | A | Ho con | 24:00 | 1.00 | 56 | 1.7 | 2.2 | _ | 2.3 | \$.6 | - | | G. | Casein Clucs | | | | | | | | | | | | | | | В. | Aircraft Joins P Clus | Casein Company of America | Nume | R | NO com | 5#100 | 0.65 | 3 * | 12.0 | 8.4 | 7. | 6.0 | **** | - | | D. | Polymerization Resins | | | _ | | A.=A | | | - h | | - 0 | 7.4 | | | | | Laminus
Laminus | American Comments Co. | 15 Benroyl Peroxide | R | 300 | 0:30
0:5 | 0.63 | 96
ah | 2.4 | 5.7
4.0 | 3.9
4.0 | 3.6
4.0 | 3.4
3.5 | | | | ER-17-AP | American Cyanamid Co. | 15 Lauroyl Peroxida | H
H | 300 | 0130
015
2:00 | 0.81 | 54 | 2.8 | | _ | | | | | | MR-17-B1
Plaston 900
CR-39 | Marco Chestoal Co.
Yarco Chestoal Co.
Flaskon Biv., Libboy-Ouene-Ford Glass Co.
Pittsburgh Fiste Glass Co. | yi pensoyi Peroxide
35 Benroyi Peroxide
24 Benroyi Peroxide
54 Benroyi Peroxide | H
H
H | 125
300
125
300
230
230
150 | 2:00
2:00
24:00
72:00 | 1.05
1.01
0.94
1.21 | 41
39
29
51 | 3.4
5.3
5.1 | 3.7
3.2
3.8
3.9 | 3.9
3.3
2.7 | 2.7
2.6
3.4
2.7 | 3.5
3.1 | | m. The resian are observed according to the temperature required to cure the resia. Cless R includes those which cure quickly at room temperature. Class H includes those which require a temperature above room temperature but not over 160°F to cure. Class H includes those which receive a temperature above 160°F to cure. TABLE II.-EFFECT OF THE OVEN-FOG AND SUNLAMP-FOG AGING TESTS (240 HOURS) ON THE FLEXURAL STRENGTH OF RESIN-BONDED BIRCH PLYWOOD PANELS | Commercial
Designation
of
Resin | Catalyst
Added to A
Resin | verage | Panel
Flexural
Strength
(lb/in ²) | | | | | |--|--|--------|--|--------|--------|--------|------| | Bakelite
XC-11749 | None | 4.8 | 27,600 | 22,200 | 19.6 | 21,900 | 20.6 | | do₄ | 45%
XK-11753 | 3.1 | 20,500 | 16,300 | 18.0 | 15,300 | 25.4 | | Catabond
590 | None | 3.5 | 28,100 | 21,700 | 22.8 ′ | 22,100 | 21.4 | | do, | 11%
Hydro-
chloric
acid (27.8%) | 1.8 | 15,600 | 10,800 | 30.8 | 11,000 | 29.5 | | Uformite
500 | None | 6.7 | 23,000 | 19,100 | 17.0 | 18,600 | 19.1 | | do. | 10%
Ammonium
chloride | 1.5 | 14,800 | 7,900 | 46.6 | 6,700 | 54.7 | TABLE III .- CHANGES IN STRENGTH PROPERTIES OF BIRCH PLYWOODS CAUBED BY VARIOUS AGING METHODS | | Change for Phenolic | r Panels Bo | onded with | Urea-Fo
(Uformite | ride Cataly | Resin Ammonium (st) | |--------------------------------|---------------------|--------------------------|------------------------------|-----------------------|--------------------------|------------------------------| | Property | Oven-Aged | Oven-Fog-
Aged
(%) | Roof-Aged
6 months
(%) | Oven-Aged (%) | Oven-Fog-
Aged
(%) | Roof-Aged
6 months
(%) | | Tensile strength | | | | | | | | Panel A
Panel B | + 7 | + 3
+ 6 | + 7
-11 | -55
-14 | -21
-21 | +19
-42 | | Flexural strength | | | | | | | | Panel A
Panel B | - 6
-12 | - 1
+ 3 | - 7
- 5 | -15
-10 | -41
-51 | -53
-72 | | Secant flaxural modulus of ela | esticity (0 to | 2500 11/ | in. ²) | | | | | Panel A
Panel B | -25
-18 | +12
+17 | -23
-13 | -15
-25 | 00 | -18
- 2 | | Izod impact strength, flatwise | | | | | | | | Panel A
Panel B | +36
0 | +14
-28 | -26
+38 | -18
-10 | -38
-27 | -20
+10 | | Izod impact strength, edgewise | | | | | | | | Panel A
Panel B | +17
-11 | - 7
-18 | +17
-18 | -3 8
-15 | - 50
- 6 | + &
+80 | | Shear strength | | | | | | | | Panel A
Panel B | +11
-43 | -46
+70 1 | 7 -25
7 -25 | - 5
+ 5 | -50
-38 | - 5 | TABLE IV.-EFFECT OF CATALEST AND ME ON PLEASURAL SEMEMOTE OF MESTE-MONDED BIROW SETFOOD | | | | | | | | | | | | n | operal Street | Over-Tag-Ages | Panal | | | Reof-and Pa | ne l | | |-------------
--|---|---------------------------------|--|--|---|---|--|---|--|--|---|---|-------------------------|--|---|--|----------------------------------|---| | | Commercial Designation of Resin | Cotalyst Added | Cleasi-
fication | ell of
Ranged
Panel | Plengra
Average
(1b/im | Tured Famel 1 Seroneth Respo | Pe. of
Speci- | Flames
Average
(1b/1sr) | Oron-And Pa | Fe. of
Speci- | Change in | (10/1m ²). | (lb/in ²) | | Change in
Strangth | 710 mm al
740 mm al
(16/15-2) | Barreneth | EG. 60 | Strength. | | 4. | Urea-Formaldohyda Rasins | | | | | | | | | | | | 5,60~9,400 | 16 | -44 | 4,5000 | 2,800-6,200 | 6 | - 0 + | | , | | 105 EH.Cl
105 er
105
er
25 es
55 eas
55 eas
10 er
17 B-7
Bone
Kome | i
RRRRR
RRR
III
III | יי ליילי טייליין טיינייים
מי ליילי טייליין טיינייים | 14, 100
15, 100
18, 400 | 10, #00-15, 500
11, 909-16, 500
18, 500-17, 400
16, 900-19, 800
16, 800-22, 500
17, 100-22, 500
16, 500-21, 200
16, 500-21, 200
16, 500-25, 700 | 12
12
12
13
15
15 | 11,100
12,600
13,900
17,200
16,700
20,400
21,600
23,000
25,800 | 9,909-12,800
11,100-15,000
11,500-15,000
15,809-15,900
15,809-19,600
15,809-19,600
16,200-21,800
16,200-25,600
19,600-25,600
19,500-27,400 | 12
11
12
12
12
15
15
15 | -16
-12
-12
-17
-17
-17
+6
-0.4 | 7,400
10,100
17,600
15,700
16,000
17,200
17,600
91,200 | 9,600-12,200
9,600-14,200
12,300-17,700
15,300-17,700
15,500-17,700
10,000-20,400
11,500-19,100
15,600-26,700
17,000-24,100 | #
#
#
#
| -89
-80
-18
-23
-14
-14
-14
-15 | 10,500
9,900
10,500
10,500
11,500
11,600 | 8,500-11,600
8,400-11,400
9,200-11,500
9,700-11,500
8,000-13,700
5,800-13,900 | 12
12
15
15
15 | - 1-3
- 1-4
- 1-4 | | 3. | Uzes-Resorrinel-Fermaldo | hyde | | | | | | | | | .== | 20,600 | 18,600-23,700 | 12 | +9 | 11.000 | y,000-18,400 | 12
12 | -43
-87 | | | Oformite 500
Flanks 700-2 | 205 Q-107; 0.75 Q-67
16) Redition | ¥ | \$: } | 19,100
21, 8 00 | 16,400-22,500
20,500-23,400 | 12 | 21,400
21,900 | 17,500-95,400
20,500-95,700 | 12 | +12
+5 | 21,300 | 18,500-23,700
15,900-24,600 | 12 | -5 | 11,000
16,000 | 14,000-18,000 | 18 | | | ٥. | Phenol-Formeldshyde | | | | | 6 | | 10 000 | 17 100-01 5 00 | 11 | -2 | 13,500 | 10,100-15,300 | 12 | -32 | 9,500
10,400 | 8,400-10,900 | 12
12 | - 23 | | 1 40 | Dares 120th Derres 120th Derres 114g October 2000 2001 | 105 % PEP
105 % PEP
105 % PEP
115 % RI and (27.55)
115 % RI and (27.55)
25 KL-275)
155 KL-1175)
Fore
Fore
Fore
Some
Some
155 RO-1755
None
Topical Period (27.55)
None
Topical (27.55)
No | | 111127747465768 | 19,400
80,200
10,900
11,700
17,900
24,000
24,600
24,600
24,600
24,900
24,700
20,800
11,700
21,800 | 17, 300-20,500
16, 700-21, 500
6, 500-17, 500
15, 500-17, 500
15, 500-19, 500
11, 100-30, 500
12, 100-30, 500
12, 100-30, 500
17, 500-27, 500
17, 500-27, 500
17, 500-27, 700
17, 900-21, 500
16, 000-25, 300 | 12 P P 15 15 15 15 15 15 15 15 15 15 15 15 15 | 15,000
11,100
13,100
13,100
16,700
17,700
25,700
25,500
25,500
17,900
26,500 | 17,100-P1,500 18,100-10,500 10,600-11,500 10,600-10,000 11,500-17,100 17,500-17,100 17,500-17,100 17,500-17,100 17,700-17,100 17,700-17,100 17,700-17,100 16,100-17,500 | 12
12
13
15 | 1952011711114 14 | 13,500
13,500
9,500
14,500
12,500
12,500
21,500
21,500
21,500
21,500
20,500 | 10, 100-15, 300
9, 900-15, 900
7, 701-11, 600
6, 800-15, 600
8, 700-15, 600
10, 700-15, 800
12, 300-25, 300
13, 300-27, 300
14, 100-27, 300
15, 500-27, 300
16, 500-27, 300
11, 500-27, 300
11, 500-27, 300
11, 500-27, 300
11, 500-27, 300 | 122555 | 11158911404116 | 10, 400
6, 500
9, 800
17, 600
10, 700
10, 700
11, 800
12, 800
12, 800
13, 800
13, 800 | 8,800-18,800
6,900-11,900
6,900-11,900
10,900-12,800
11,900-16,900
10,400-18,800
15,900-16,900
10,400-18,800
15,900-16,900
14,900-18,700
14,900-18,700
6,900-18,700 | 12
12
12
15
15
16 | NACA TN No. | | D | . Reservinci-Formaldchyde | Recine | | | | | | _ | | _ | +12 | 17 500 | 16,400-16,40 | 0 12 | o | 10,700 | 9,200-12,200
9,600-14,900 | R | -22 | | | Dures 12490
Pensocite 0-131
Bakelite IC-17013
Amberlite FM-755
Ponsocite 2-1154
Durite 5-3026 | 115 Formaldebyde
205 G-1131B
205 H-17618
205 R-79
205 G-11648
165 30264 | R
H
H
R
R | 547.13 | 17,500
19,500
91,800
80,700
91,600
17,600 | 17,000-00,700 | | 19, 6 00
=
23,100 | 17,600-E1,000
E1,400-E4,400 | #
-
12 | ±7 | 17,500
21,600
19,600
19,600
18,000
17,500 | 16,500-18,50
19,200-23,10
16,500-21,50
16,100-19,40
16,200-19,20 | | ************************************** | 12,000
12,800
11,000
10,100
10,700 | 9,600-14,900
10,780-14,300
9,800-12,700
8,200-11,800
9,806-11,900 | 12
12 | 116 1 | | 1 | . Phonol-Resorcinel-Form | ldebyde Resins | | | | | | 23,400 | 21,400-25,000 | 12 | +5 | 21,300 | 20,000-23,00 | 0 12 | -5 | 10,700 | 9,400-12,500 | 12 | -52 | | | Pares 12533 | 1006 125360 | × | 5.1 | 22,300 | 21,100-23, 60 0 |) 1 ? | -,,-00 | | | - | | | | | | | | | | 1 | F. Forms Besins
Regin X | 5 2-11 | R | 2.2 | 17,100 | _4,800=R0,000 | 36 | _ | | - | - | 16,400 | 12,700-20,80 | 0 % | -5 | 4,500 | 7 ,000-10,600 | 36 | -50 | | | 3. Ossein Class | # - T | | | | | | | | | | | 12,700-14,60 | n 12 | -5 | | | | ~~ | | , | Alrereft Joint P Clas | Youe | | 4.8 | 14,100 | 14,400-20,100 | 3 12 | 20,700 | 12,300-23,600 | 1* | +14 | 17,800 | TK* (m-18*pc | ~ # | *** | - | | | | | | N. Unentersted Polyecter B | odina | | | | | | | 10 800.57 24 | . 1= | +19 | 17,600 | 16,900-19,60 | x) 12 | +16 | 9,900
9,500 | 9,400-10,600
9,000-10,600 |) 10
15 | -73 | | | Lamineo
Leeringo
RE-17-12
DR-17-101
Plusione 900
CM-70 | 15 Bensoyl Peroxida
15 Leureyl Peroxida
15 Bensoyl Peroxida
17 Benseyl Peroxida
18 Benseyl Peroxida
18 Benseyl Peroxida | , H | 3.7
3.7
3.8
5.9 | 15,900
18,600
24,900
15,900
24,600 | 12,700-15,50
17,000-21,00
22,500-26,70
20,500-26,10
9,500-19,60
21,500-27,10 | 0 15
0 15
0 30 | 19,500
19,500
23,400
22,400 | 19,000-10,700
20,600-25,600
19,700-27,000 | | #### 1 | 16,300
90,900
90,300
15,500
P4,700 | 12,200-19,80
17,900-93,70 | 70 15
10 15
10 16 | -13
-14
-11
-0,4 | 10,100
9,700
7,800
12,300 | 6,500-11,40
6,900-11,30
6,100-10,00
10,500-14,00 | 15 | No. of the last | a. Pamels delevaneted during excessive on roof. b. The three pamels expected delevaneted partially so that only 17 specimens were obtained instead of 30 as plasmed. c. Pamels exposed on roof for only six months. TABLE V.-EFFECT OF CATALEST AND PR ON THE IMPACT STRUCTURE OF WESTE-MONDED BURCH PLYWOOD | | | | | | | | | | | | mpact Strong | th (Edgard | oo)
Over-For- | and Park | 1 | | tood-Ared | Fare1 | | |----|--
--|---|-------------------|---|--|--|---|---|--|--|--------------------------------------|---|--|---|---|---|---------------------------|--------------------------------------| | | | | | phi of | V ₀ | end Pine | lo. ef | | | No, of | Champo in | | | Doct- | Strength | Average. | Pener | Fo. of
Speci- | Obenie in
Strength | | | Commercial Designation of North | Catalyst Added | Classic
Clossics | Unared
Page 1 | ([t-1b) | (19-1b) | Spect- | (ft-1b) | | Speci- | Strongth
(\$) | (ft-15) | (G-19) | | (3) | <u>(ft-15)</u> | (n-b) | _11101 | 12/ | | A. | Uron-Formaldehyde Resins | | | | | | | | | _ | -30 | 1.3 | 0.5-1.8 | 6 | -23 | 3.00 | 3.0-3.1 | 5 | +50 | | | Brownise \$30
Upornise \$50
Upornise \$50
Flashon 201-2
Game 5
Flashon 207-2
Flashon 107
Upornise 500
Game 5
Wornise \$30 | log Associate Chloride
log ""
105 ""
"% "A"
"% "A"
18corporated with remin
76 "A"
Name
None
Bone | R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R | | 2.0
2.0
2.2
2.3
2.3
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3 | 1.4-2.5
1.5-2.8
1.4-2.5
2.6-2.8
2.6-3.1
2.1-3.6
3.0-3.2
2.6-3.3 | 166666611111111111111111111111111111111 | 1.4
1.5
1.6
2.6
2.6
2.6
2.6 | 1.2-1.6
0.5-1.6
1.1-1.5
1.3-1.6
1.3-1.6
1.3-1.5
2.7-2.9
2.7-3.0 | 5666666
151
151 | -30
-35
-35
-36
-36
-73
-73 | 1.76
1.76
1.76
2.54
2.59 | 0.9-1.6
1.4-1.8
1:1-3.0
1.5-1.9
1.8-2.1
2.3-2.4
2.0-2.9
2.2-2.7 | 76
18
18
18 | -56
-55
-15
-16
-17
-17
-17 | 2.0
2.4
1.9
2.4
2.6
1.9
 1.0-2.5
1.1-2.8
1.8-1.9
2.3-2.4
1.6-3.1
1.6-2.0 | 6
18
18
18
18 | -9
-9
-92
-17
-17
-77 | | 9. | Gree-Resortingl-Formales | dyda Resigs | | | | | | | | 4 | ** | 1.9 | 1.6-2.2
2.1-2.7 | 3 | -30
-38 | 1.9 | 1.6-2.2
2.0-2.1 | 3 | -70 H | | | Eformite 500
Plesion 700-2 | 206 0-107: 0.74 9-67
166 Feditier | × | \$:\$ | £:7 | 3.6-1.2 | ě | 7.E
3.2 | 2.9-3.8 | å | 20 | 2.5 | 2.1-2.7 | • | -36 | 2.1 | E-O-C-I | · | naca
∺₹ | | ¢. | Phonol-Formuldehyde Resi | Lare | | | | | | | | | | 1.6 | 1.7-1.6 | 5 | -30 | 1.0 | 1.0-1.1 | ٤ | | | 19 | Dures 18041 Dures 11497 Quathond 500 Catabond 500-Ca Bekmilts X0-3931 Bekmilts X0-1931 Bekmilts X0-11799 Catabond 500 Bakmilts X0-11769 Catabond 500-CC Catabo | 106 feet
106 feet
106 feet seid (27.0%)
106 feet seid (27.0%)
107 feet
107 feet
108 feet | 时时发生机果直拉拉克加里拉里 | 1.57165664024 | 25074 4 04 26 57 70 0 | 2-1-1-5-4-7-6-7-5-6-4-7- | 6646667178818818888888888888888888888888 | 20784044186486 | 1.5-0.5
1.5-0.5
1.5-1.67-5
1.5-1.5-7
1.5-1.5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5-7
1.5-7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2.7-5
2 | 5666666
188
18
18
18
18 | -73
-34
-36
-36
+49
+49
-77
+20 | 1.539 # 503790
1.539 # 503790 | 0.9-2.0
0.4-1.9
1.4-1.5
2.7-3.0
2.1-2.9
3.0-2.1
2.5-3.4
2.9-3.4 | 666666
151
156
156
157
158
158
158
158
158
158
158
158
158
158 | 27750 P.550 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 1.0
1.7
1.1
1.9
1.6
1.6
2.1
2.9
2.9 | 1.1-1-4
0.5-0.7
1.0-1-2
0.5-1-9
1.3-7-0
1.4-1-5
1.5-2-8
1.5-2-8
2-8-2-2 | 12 | TN No. 1161 | | ט. | Resorcinol-Formaldskyde
Purez 12490 | Notine
30% Formild-kyde (37%) | R | 4.5 | 13 | 3.0-3.4
2.9-3.4 | ģ | 3.1
2.5 | 2.5-3.5
2.5-3.1 | ٤ | -6
-10 | 2.9
3.3 | 2.7-3.0 | 3 | -12
+6 | 2.9
1.7 | 2.7-3.0
1.3-2.6 | 3 | -12
-45 | | | Pensoclite G-1124 | 276 8-11248 | R | 5.1 | 3.1 | 2.9-7.4 | ٠ | 2.0 | ¥.7-7.x | ٠ | | | | | | | | | | | E. | Phonol-Resortintl-Ferms | ldehyde Resins
1005-1253hB | ĸ | 5,1 | 3-5 | 3.4-3.6 | 6 | 2.3 | 1.9-2.5 | 6 | 3 4 | 2.3 | E.O-2.5 | 6 | -34 | 2.3 | 2.1-2.5 | . 6 | -34 | | 7. | Oures 12533
Green Olwer | 2007 2277 - | | - | | | | | | | | | | | -36 | | | - | | | | Aircraft Joint P Clue | Tene | 1 | 8.4 | 5.0 | 4,8-6.1 | . 6 | 5.9 | 3.6-4.1 | . 6 | -22 | 3.2 | 2.3-4.0 | 5 | -,0 | 7 | | | | | ů. | Polymerization Hotimo Laminac NR-17-A2 NR-17-R1 CR-39 | 14 Benneyl Perceide
15 Leuroyl Perceide
55 Benneyl Perceide
55 Benneyl Perceide
55 Benneyl Perceide | n
H
H | 2.7
3.7
5.5 | 3.9
4.7
3.6
3.6 | 3.7-4.2
6.4-5.1
7.0-4.0
6.3-4.8
3.5-4.1 | 16
18
18
18
18 | 4.0
3.3
4.0
4.2 | 7.6.4.1
7.5.5.6
1.6.4.4
7.4.4.6
9.5.4.6 | 18
16
18
15
24 | +3
-2
-2
-13
+11 | 3.6
3.2
4.0 | 7.14.0
7.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.14.15.15.14.15.15.15.15 | 18
7 18
18
18
1 18 | 4444 | 1.9
2.1
1.9
2.4
2.9 | 1.9-2.
1.6-2.
1.6-2.
2.8-2.
2.5-1. | 1 18
5 18 | -51
-46
-46 | do Pomels deliminated during exposure on reef. b. Punels expect for only 6 rouths. | | | | | Stear Str | | | | | | | | | | | | | oof-land | Tanal . | | |----|---
---|---|--------------------------|--|---|-------------------|---|---|---|-----------------------------|--|---|--------|--|--|--------------------|---------------------------------------|-------------------| | | | | | | | pared Proc | 10. 07 | | Dvan- | | Chance in | | VIII - 10 21 | Bo, es | Charles in | | | 0. 01 | Charge ir | | | Commercial Designation of Resign | Catalyst Added
to Reein | Classi-
firstion | Cantag
Cantag | (Marie) | (17/12) | Spect- | (18/12 <u>)</u> | (17/1 4) | Bpen1- | Strangth
(5) | (Will) | (19/15)
grafts | 99001- | # trength | (15/15) | (INCE) | Opeci- | Strongth
(\$) | | k. | Bres-Formaldobyde Resina | 1 | | | | | | | | _ | _ | | | | -41 | 200 | 120-720 | , ¢ | -9 | | | Ufermite * \$0 Ofermite \$50 Ofermite \$50 Ofermite \$50 Plankan \$51-2 Sacon \$5 Plankan \$50-2 Plankan \$57 Plankan \$57 Effermite \$50 Casco \$5 Ufermite \$50 Ufermite \$50 | 10% Ameonium Chloride
106 : 12°
105 : 12°
105 : 12°
12° : 2°
11° | R 市 P R R R F F F F F F F F F F F F F F F F | 904 84 6867-6 | 220
440
550
620
680
740
740
4
820 | 150-960
130-500
526-670
560-670
530-670
680-800
680-810 | eve tour sides in | 200
1400
1450
1400
4
4
4
4
4 |
180-720
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-120
190-12 | 111111111111111111111111111111111111111 | -77
-127
-111
+117 | 130
320
570
630
890
680
710
4 | 120-130
250-360
350-510
150-640
560-680 | W | -33
-55
-55
-55
-55
-54
-4 | 70
50
50
50
50
50
60
60
60
60
60
60
60
60
60
60
60
60
60 | 500-540
430-520 | | -13
-29
-27 | | в. | Urea-Resorvinel-Fermilie | | | | | | _ | | | | | £E0 | | 1 | -11 | 620 | 600-630 | 2 | -15 Z | | | Wiermite 500
Plastom 700-2 | 20" Q-101; 0.75 Q-87
16% Medifier | Ħ | 4:5 | 730
#10 | 680-618
780-830 | 3 | 7 5 0 | | ī | -7 | € 5 0 | === | = | Ξ | ď | | - | NACA
FI | | c. | Physical-Formaldehyds Real | | | | | | | | | | | | | _ | | | | _ | | | 20 | Burer 12041 Burer 11427 Catabond 550 Catabond 200-GE Bekelite 16-3793 Bekelite 16-3793 Bekelite 16-3793 Bekelite 16-3793 Bekelite 16-3795 Bekelite 16-3795 Bekelite 16-3795 Catabond 200-GC Catabond 200-GC Catabond 17-67 Burda 18041 Tago Film Amburita PR-14 | lof, 7622
lot, 7622
lot, 7622
lot, 8611 acid (27.85)
31.7-97, 861, 861
31.7-97, 861
8016
8016
8016
8016
8016
8016
8016
8 | | 11112746767640746 | d 1 d d 0900 d 900 | 770-510
760-520
700-530
770-610
550-670
550-670
390-1200
660-970 | | d
d
d
570
d
710
4
670
840
840
a | 570-590
590-749
590-760
690-710
790-590
120-580 | 1 + 1041 MAIN 0 1 1 1 1 | 172 | 4 d d d d d d d d d d d d d d d d d d d | 690-740
670-740
670-740
770-800
770-800
620-1030
640-1080 | | | 9 4 4 4 4 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 | 100-580
380-790 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TN No. 1161 | | 3. | Resorcing l-Formaldehyde | | | | | | | | | | _ | | 6 60 | | ~22 | 670 | 600-700 | 3 | -14 | | | Ouros 1:0-90
Fenedolile G-2129 | 30% farmaldehyda (37%)
25% 0-11298 | R | 4.6
5.1 | 750
870 | 610-900
360-870 | 5
3 | 740
620 | 720-600
740-900 | 2 | -5 | 610
900 | 530-660 | ì | +3 | 2 | | <u>-</u> | | | E, | Phenol-Resorcisol-Forms | | | | | | | | | _ | +4 | 700 | 670-700 | 3 | -7 | | | _ | - | | | Dures 12533 | 100% 125343 | × | 5.1 | 750 | 710-610 | 6 | 750 | | 1 | 17 | 100 | 610-100 | , | | • | | | | | P. | Casein Gluss
Airgraft Jaint P Glus | Hene | X | 6.4 | 89 0 | 690-1090 | 6 | #60 | | - | +1 | 560 | 420-640 | 6 | -34 | ъ | | - | | | 6. | Polymerization Resine | | | | | | | | | _ | | 460 | 100 200 | | | 500 | kan_gho | | 4 | | | Leatmer
Leatmer
16-17-A2
16-17-11
CR-39 | 76 Bennoyl Peroxide
25 Lauroyl Pepoxits
75 Emmoyl Peroxide
15 Emmoyl Peroxide
66 Bennoyl Peroxide | K
T
T
N | 3.7
4.0
3.7
3.9 | 580
580
760
870 | 250-640
570-550
570-750
670-760 | 99999 | 540
700
700
700 | 490-600
170-500
680-720
670-750
710-900 | 66443 | -10
+5
0
-5 | 460
440
650
730 | 190-520
320-490
530-740
690-760
870-930 | | 1#
1#
0
+4
+6 | 500
4
4
4
4 | 170-210
390-110 | | -16
 | a. Biz speakens were tested in much case; those which broke in tendion were not included in computing the other atrangth. b. Finals deligiously during exposure on roof. c. Panels expessed for only 6 souths. d. All speciacas broke is tension rather than shear. TABLE VII .- EFFECT OF CATALYSTS AND PH ON THE DELAMINATION OF RESIX-BONDED BIRCH PLYWOOD | | | | | | | Condition of fter Delamine | | | |----|--|---|--|--------------------------|--|--
--|---| | | Commercial Designation of Resin | Catalyst
Added to
Resin | Classi-
fication | pH of
Unaged
Panel | | Oven-iged
Panel | Oven-Fog-
Aged
Panel | Roof-
Aged
Panel | | ٨. | Urea-Formaldehyde Resina | | | | | | | | | | Uformite 430
Uformite 430
Uformite 430
Plaskon 201-2
Casco 5
Plaskon 250-2
Plaskon 107
Uformite 500
Casco 5
Uformite 430 | 10% Ammonium Chloride 10% "Z" 10% "Y" 27 "A" 55 "AA" Incorporated with resin 7% B-7 None Wone Hone | R
R
R
R
R
R
H
H
H
H
H
H
H
H | #W.J.W.W.W.W.W.P.P. | D(1)
D(3)
D(2)
D(2)
D(2)
D(3)
FD(3)
SD(1);F(5)
SD(1);F(5) | D(2) D(2) D(4) D(4) D(4) D(4) D(1) D(1) SD(1);F(5) | D(1) D(2) D(3) D(3) D(2) D(2) D(3) D(1) SD(1);F(5) | DR DR D(1) DR D(1) DR D(1) D(1) D(5) | | В. | Urea-Resorcinol-Formalde | hyde Resins | | | | | | | | | Uformite 500
Plaskon 700-2 | 20% Q-107; 0.7% Q-87
16% Modifier | A
A | 5.1
4.6 | ND; F(5)
ND; F(5) | ND; F(5)
ND; F(5) | ND; F(5)
ND; F(5) | D(5)
D(5) | | C. | Phenol-Formaldehyde Resi | ns | | | | | | | | | Durez 12041 Durez 11427 Catabond 590 Catabond 200-02 Bakelite IC-3931 Bakelite IC-3931 Bakelite IC-11749 Catabond 590 Bakelite IC-11749 Catabond 590 Catabond 200-02 Catabond 200-02 Cascophen LT-67 Durez 12041 Tego Fils Amberlite PR-14 | 105 7422 105 7422 105 7422 115 Hydrochloric soid (2755) 115 Hydrochloric soid (2755) 115 Hydrochloric soid (2755) 115 Hydrochloric soid (2755) 115 Hz-2997 115 Hz-21753 None None None None None None None None | W
W
M
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R | 11112774746588 | HD: RESEARCH STATE OF THE | HD; B(5)
HD; B(5)
HD; B(5)
HD; B(5)
HD; B(5)
HD; F(5)
HD; F(5)
HD; F(5)
HD; F(5) | ND: 865
ND: 865
ND: 864
ND: 864
ND: 864
ND: 765
ND: | NO. BEC. S. | | D. | Resorcinol-Formsldehyde | | | | | | | | | | Durez 12490
Penacolite G-1124 | 30% Formaldehyde (37%)
25% G-1124 B | R
R | 4.8
5.1 | HD; F(5);
HD; F(5); | HD; F(5);
HD; F(5); | HD; F(5);
HD; F(5);
T | HD;B(5);
HD;B(5); | | E. | Phenol-Resorcinol-Formal | dehyde Resins | | | | | | | | | Durez 12533 | 100% 12534 B | и | 5.1 | ND; F(5) | ND; F(5) | HD; F(5) | ND; B(5) | | r, | Casein Glues | | | | | | | | | | Aircraft Joint P Glue | None | R | 8.4 | HD;F(5); | ND;F(5); | ND; F(5); | DR | | G. | Polymerization Resins | | | | | | - | | | | Laminac
Laminac
HR-17-A2
MR-17-B1
CR-39 | 15 Benzoyl Peroxide
15 Lauroyl Peroxide
35 Benzoyl Peroxide
35 Benzoyl Peroxide
55 Benzoyl Peroxide | H
H
H | 3.7
4.0
3.7
2.9 | SD(1):F(5)
SD(1):F(5)
ND:F(5)
ND:F(5)
ND:F(5) | SD(1);F(5)
SD(1);F(5)
ND;F(5)
ND;F(5)
ND;F(5) | SD(1);F(5)
SD(1);F(5)
ND;F(5)
ND;F(5)
ND;F(5) | 8D(5); F(5)
8D(5); F(5)
8D(5); F(5)
8D(5); F(5)
8D(5); F(5) | ^aThe specimens were subjected to 5 cycles of immersion in boiling water and drying, described on page 5. Figure in parenthesis refers to cycle in which observation was made. Abbreviations are as follows: D = delaminsted SD = slightly deleminated HD = no delamination DR = delamination reatment during exposure treatment on roof W = warped B = brittle F = flexible # TABLE VIII.- EFFECT OF CATALIST AND DH ON FLEXURAL, IMPACT, AND SHEAR STRENGTHS OF RESIM-BONDED BIRCH PLINOOD | | | | | | Decreas | e in
trength | <u>a</u> | Isod | Decreas
Impact | s in
Strens | tha | ···· | Decres
Shear S | se in
trength | <u>a</u> | |-------------|---------------------------------------|-------------------------------|---------------------------|------------------------|-------------------------------|------------------------------|--------------------------------|------------------------|-------------------------------|------------------------------|-------------------------------|------------------------|-------------------------------|-----------------------|--------------------------------| | | Commercial
Designation
of Sesia | Ontalyst
Added to
Pests | pli of
Unaged
Panel | Unaged
Panel
(%) | Oven-
Aged
Panel
(5) | Fog-
Aged
Panel | Roof-
Aged
Panel
(\$) | Unaged
Panel
(4) | Oven-
Aged
Pane1
(%) | Fog-
Aged
Panel
(5) | Roof-
Aged
Panel
(%) | Unaged
Panel
(1) | Oven-
Aged
Panel
(%) | Fog-
Aged
Panel | Roof-
Aged
Panel
(\$) | | Δ. | Urea-Formaldskyde | | | | | | | | | | | | | | | | | Uformite 430 | None
10% *Y°
10% *H Cl | 4.6
2.4
2.0
1.9 | 30
37
42 | 39
45
51 | 3 ¹ 4
47
61 | b
b | 33
33
33
33 | 50
44
46 | 40
52
48 | b
b | 29
41
73 | 43
49
75 | e
e
c | c
c
c | | | Casco 5 | Mone
5% °AA' | 5.7
3.4 | 11 | 27 | 56 | b | 27 |
50 | 32 | 6 | • | - | - | 0 | | № в. | Phonolio Besins | | | | | | | | | | | | | | | | | Catabond 590 | Nome
11\$ HUL acid (27.8%) | 3.6
1.7 | 56 |
58 | 57 | 6 4 | 62 | 79 | 72 | 63 | o o | 0 | ō | • | | | Catabond 200-0% | Nome
11\$ BO1 acid (27.8%) | 4.6
1.8 | 51 | 51 | 61 | 62 | 60 | 68 | 63 | - 56 | • | c | 0 | | | | Bakelite 10-11749 | Yogo
45% XK-11753 | 3.9
3.1 | 25 | 37 | 41 | 31 | 23 | 36 | 48 | 25 | 48 | <u></u>
19 | 55 | • | | | Bakelite XC-3931 | None
3% XX-2997 | 2.7 | 27 |
35 | 53 | - - - | 31 | 59 | 46 | 51 | a | 15 | 0 | 0 | | | Dures 12041 | None
106 7422 | 5.0
1.8 | 21 | 28 | 1-3 | 46 |
30 | 38 | 41 | 50 | - | - |
0 | 0 | a. Decrease in strength for the unaged, oven-aged, oven-fog-aged, and roof-aged panels, respectively, is calculated on the basis of the strength of the unaged, oven-aged, oven-fog-aged, and roof-aged panels, respectively, made without catalyst. b. Panels delaminated during exposure on roof. Panels containing catalyst or reference uncatalyzed panels failed in tension rather than shear. # TABLE IX. - EFFECT OF GATALTEST ON PLANMENT OF STREET OF STREET PARTICLE SECTION WITH A RESONANCE-FORMAL MENTAL PRESENT OF GATALTEST OF CLUBS. | | | | | | | | | | | | | | | | | | | Char
Direct
to Cat | ngo in
rih Dag
ralves | \$ tre | nge in
math
Agings | |-------------------------|---------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------|---|-----------------|--------------------------------------|--
---|--------------------------------------|---|----------------------|----------------------------------|--|---------------------------------|-------------------------------| | | | _ | Besin | | n] | | Oven- | | | Name of Party | | il Strongt | Deta | | | Coll-land Panels | | | CYPE- | Oven | | | | Milliagulvalents
of Catalywa | Depoity
of | Content
of | Roulm | | | FOR- | Roof- | PASTERS. | SI STREET | Josef
Sesoi- | Average | Renga | Speci- | Average
Average | | No. of
Apeol- | Bosped | Fog- 900f- | Fog- | - Poot- | | Cutslyst Added to Regin | per 100 g of
Posin | (g/cu3) | Page 1 | 801%-
1100 | Rosin
Tiln | Uneged
Panel | Aged
Printl | reel, | (1b/in ²) | (11/11-) | _HCM_ | (Ib/in) | _(1b/in*) | 200 | (1b/1m²) | (1b/in²) | 707.0 | Tanal
(4) | Panel Panel | Pane) | Proof | | Yose | | 0.93 | 27.1 | 7.3 | 6.5 | 6.1 | 5.5 | 3.7 | 19.100 | 17,600-20,600 | 36 | 19,300 | 17,907-20,500 | 36 | 11,100 | 10,209-12,000 | 36 | | | +1.0 | | | Hydrochloric sold | <u> </u> | 0.90
0.31
0.69
0.91 | 22.4
24.0
22.4
23.5 | 4.1
1.5
0.4
0.6 | 4.1
2.5
1.8
1.3 | \$:\$
3:7
3:0 | 3.4
3.4
3.2 | 3.5
3.4
3.8 | 18,900
19,300
18,700
17,700 | 16,900-20,600
17,200-20,400
17,300-19,700
15,000-20,500 | 36
36
36 | 16,800
17,400
16,800
13,600 | 15,600-17,700
15,007-14,600
15,107-16,700
10,100-16,200 | 16 | 10,300
10,300
9,900
5,200 | 9,400-11,500
9,000-11,500
6,700-11,200
8,100-11,000 | 36
36
50 | -1.0
+1.0
-2.1
-7.3 | -13.0 -7.2
-9.8 -7.2
-13.0 -10.2
-20.5 -26.6 | -11.1
-9.8
-10.4
-22.0 | +46,6
-47.1 | | Mitrio scid | 19
17
18
18 | 0.15
0.55
0.90
0.92 | 21.9
22.3
24.1
24.6 | 5.3
1.1
0.5
0.3 | 2.1
1.7
1.5 | 4.6
4.5
4.1
3.9 | 1.3
1.6
3.6 | 7.6
2.4
3.5
3.1 | 19,400
18,800
18,700
12,100 | 17,500-21,600
16,200-20,400
17,300-21,000
12,500-20,000 | ¥5656 | 15,200
17,600
17,100
15,000 | 16,400-19,900
16,300-18,900
15,100-18,900
13,700-17,200 | 36
36
36 | 10,200
9,700
10,000
8,600 | 5,990-12,200
5,400-10,600
9,100-11,100
6,500- 9,700 | 15 M | +1, 6
-1, 6
-2, 1
-5, 2 | -5.7 -7.8
-6.6 -12.6
-11.4 -9.9
-78.3 -22.5 | -6.1
-6.1
-8.6
-17.1 | 10.00 | | Spifurie soid | 19
65
72 | 0.91
0,58
0.90
0.90 | 21.7
21.7
23.7
22.5 | 2,4
0.9
0.4 | 1.7
1.5 | 1.50 | 4.1
3.1
2.5 | 3.1
7.2
7.4
3.4 | 19,100
19,400
18,250
18,060 | 17,500-21,200
17,100-22,000
16,100-20,400
14,200-20,400 | 6 0000 | 16,700
18,700
16,600
14,100 | 16,300-19,700
16,500-20,000
14,200-18,500
11,300-15,500 | 166
166
166
166
166
166
166
166
166
166 | 10,000
10,800
8,300
8,500 | 8,600-11,100
9,100-11,500
7,000- 9,400
6,800-10,400 | 36
36
36
36 | 0.0
+1.6
-3.7
-5.6 | 15:7 - 15:1
- 15:3
- 15:3
- 15:4
- 15:4 | ~\$.;
=2.;
=5.;
-21.; | 고
고 | | Phosphoric sold | 19
26
21
101 | 0.89
0.88
0.90
0.96 | 23.3
22.7
24.7
24.7 | 4.5
2.9
1.7
1.1 | 4.2
3.0
2.0
1.9 | 3.0 | 4.2
4.1
2.9
2.5 | 3. k
2. k
3. Z | 15,500
15,300
15,100
15,600 | 17,000-20,500
16,900-19,500
16,300-19,300
13,800-20,400 | 36
36
36 | 18,500
17,900
16,300
13,600 | 17,100-20,400
15,300-19,400
13,500-17,900
12,000-15,600 | 16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00
16.00 | 10,400
10,000
9,700
6,700 | 9,100-11,700
8,100-11,200
7,000-11,600
7,900- 9,600 | 36
36
36
36 | -1.6
-4.2
-5.2
-5.8 | 11 6.3
-7.2 4.3
-15.5
19.6
-25.5 28.4 | -1.(
-2.(
-9.0 | 10° | | Hypophosphorous acid | 20
27
51
100 | 0.57
0.55
0.89
0.91 | 典.年
鈴.c
錦.5
森.1 | 1.7
1.7
1.4 | 1.5
1.6 | 4.5
3.5
2.6 | 4.3
4.1
3.5 | 3.5
3.4
3.3
8.5 | 19,500
19,100
19,100
18,500 | 16,000-21,500
17,900-20,100
17,600-20,500
17,500-20,100 | X | 16,600
14,700
17,600
15,600 | 17,100-20,000
16,000-19,500
15,000-19,000
13,900-18,000 | %
%
% | 10,990
10,608
10,700
9,000 | 9,400-12,300
9,100-12,400
6,700-19,360
6,400-19,400 | 36
36
79
35 | +P.1
0.0
0.0
-1.6 | -2.6 -1,5
-5.8 -1,5
-6.6 -1,1
-16.1 -16.9 | 1:1
-7:1 | 数品 | | Bears magnificate acid | 19 ·
84
32
34 | 0.86
0.87
0.89
0.90 | 21.3
25.6
21.6 | 4,4
1.3
0.4
0.5 | 1.2
1.2
1.4 | 1.5
1.5
3.1 | ¥.3
3:2 | 3.1
3.2
7.1
3.2 | 19,400
20,100
19,600
14,900 | 15,000-20,500
17,900-21,300
17,400-20,400
17,203-20,200 | 6
6
76 | 16,800
15,600
17,600
15,600 | 17,100-19,500
17,000-20,400
14,600-19,900
13,200-17,700 | *** | 10,200
10,600
9,500
7,400 | 7,400-12,400
9,500-12,400
9,200-11,300
7,200-12,100 | 36
36
36
36 | +1.6
+5.8
+2.6
-1.0 | -7.5 -14.6
-7.5 -15.5
-19.2 -15.3 | -6.
-6.
-9. | 2 -37.8
2 -37.8
2 -51.5 | | Trichlorescetic acid | 27
17
185 | 0.87
0.86
0.85
0.89 | 20.5
20.4
21.0
21.5 | 1.6
1.2
1.0 | 1.6
1.4 | 5.7
5.0 | 5.0
5.1
4.7 | 3,7
3,7
4,1 | 16,700
19,800
18,500
19,300 | 16,900-P0,500
17,600-P0,600
15,800-E0,000
15,700-\$1,100 | 36
36
36 | 13,500
15,600
16,900
16,900 | 16,300-20,600
17,500-20,600
18,500-18,600
13,100-16,900 | KINDER | 10,700
10,600
10,300
10,300 | 9,700-11,600
10,200-11,600
9,000-11,000
9,200-11,400 | 36
36
36 | -2.1
+0.5
-3.1
+1.0 | -2.7
-2.6
-2.7
-12.4
-7.2
-14.5
-7.2 | -2.
-3.
-5. | 7 -4e.5 | | Witremilio moid | 15
85 | 0.56
0.57 | 71.3
21.6
29.2 | 5:5
1:1
0:7 | 4.6
3.0
9.7 | 5.0
4.1 | 4.5
3.9 | 3.4
3.3 | 14,600
13,600
15,800 | 13,400-71,100
14,600-70,100
16,400-70,300 | %
% | 14,400
17,900
16,700 | 15,400-21,400
15,400-20,200
15,200-17,700 | X | 10,160 | 9,000-11,600
6,600-12,000
7,700-11,800 | 36
36
34 | -1.6
-2.6
-4.7 | -13.5 -10.9
-13.5 -16.2 | -2,
-1. | 1 -46.5
5 -46.2 | | Sedium kydnozide | 140 | 1.06 | 35.3 | 10.5 | 11.5 | 9.2 | 8.5 | | 19,200 | 16,990-81,500 | 30 | 16,000 | 14,300-18,000 | 30 | | | - | +0.5 | -17.1 | -16. | | s. All panels prepared by pressing at 190°7 for 24 hours, using notal here to control thickness. b. Change in strength for the unged and over-fog-aged penals, respectively, is calculated on the bests of the strength of the unaged and over-fog-aged penals, respectively, made without outsignt. c. Change in strength calculated on the basis of the strength of the maged panel. | N | | |---|--| | 4 | | | | | | | tale i | . - 2717. C7 | or au | KAT, AWO | acide ox PM | CHOLIC RESISENCE | IDED PLYNO | ™ | | | | | | 1 | Grange (
Ctrongt) | ١ . | Otengo in
Strength | |-------------------------------|--|-------------------------------|-----------------------------|------------------------------|---------------------|--------------------------------|-------------------------|--------------------------------------|--|------------------|--------------------------------------|--|------------------|--------------------------------------|--|----------|-----------------------------|---|-------------------------------|---| | Satulmit Adda4 to Besta | Milimonivalents
of Ontalyst per
106 g of
Rein | Soncity
of Penel
[r/m2] | Resin
Calation | Resia
Film | Managai
Panél | Ovep-
Feg-
Aged
Panal | Read-
April
Pagel | | bange 2 | To. of
Speci- | Property (18/12) | Par-land Female
(lb/in ²) | No. of
Speci- | Average
(1b/1a) | Range (10/11) | Fo, ef | Venged
Propl | Pope
Page
Page
Page
Page
Page
Page
Page
Pag | Roof-
Aged
Pagel | Oven-
For Rost-
Aged Aged
Panel Panel | | C1000MGA F4-63 WG R-79 | Yese | _ | 0,95 | 8.5 | E.7 | 6.7 | 6.4 | 5-2 | 22,100 | 15,700-24,000 | 36 | A,000 | 21,400-26,400 | 36 | 13,000 | 11,700-15,000 | 36 | - | | | +4.6 -41.2 | | Sodiwa kyduo rida | | 3.03
0.95
0.98
0.97 | 12.1
11.3
10.6
9.3 | 12.2
11.0
10.4
10.0 | 4.3
7.6
7.8 | 7.8
7.7
6.9 | \$.7
3.7 | 98,100
21,600
21,500
21,300 | 19,500-24,000
16,700-23,500
80,100-23,500
16,900-23,500 | KREK | 18,600
19,700
20,400
20,500 | 17,300-20,500
17,500-21,800
17,500-21,800
19,000-22,000 | XXXX | 13,900
14,300
13,500
12,900 | 11,900-15,200
12,400-16,400
12,000-14,700
11,600-15,500 | XX. | 0.0
-1.5
-1.4
-3.6 | -17.7
-17.9
-13.0
-14.6 | +6.9
+10.0
+3.6
-0.6 | -14.9 -37.1
-9.6 -34.4
-6.4 -36.1
-3.8 -25.4 | | Triphlomenatio sold | 2 | 0.94
0.92
0.85 | 5:5
1.5 | 1:3
1.7 | 6-3
1-3 | 6.6
2.3 | 4.5
5.0
4.6 | 21,000
80,200
19,500 | 18,700-23,400
16,700-23,710
16,800-23,600 | ž | 22,200
20,900
20,500 | 14,300-24,500
14,700-23,700
14,400-22,000 | ¥ | 12,200
11,600
12,700 | 10,900-13,900
9,400-15,400
11,100-14,000 | 75
56 | -1.0
-11.6 | -17:5
-14:6 | -6.2
-10.8
-2.3 | 13.7 -11.9
13.5 -23.6
15.1 -7.9 | | Bundannulfunin acid | 22 | 0.32
0.30
0.67 | 3.1
0.8 | 5.6
4.1
2.2 |]: { | 1.5
1.2
3.5 | | 21,600
20,400
17,900 | 19,000-F-,900
16,300-21,500
15,300-21,500 | 44
48 | 21,200
20,700
17,400 | 18,700-23,600
18,500-22,800
15,600-19,400 | i.p
i.p | | | Ξ | -1:1
-13:1 | -11.7
-13.8
-27.5 | = | 0.0
+1.5
-2.6 | | Typephoteherotta said | 778 | 1.0 | 6.4
2.7
1.9 | 5.6
1.6 | 1.9
2.8 | 1.6
2.1 | | 25,000
25,000
19,700 | 20,500-26,100
22,200-26,000
17,700-22,200 | 15 | 700
23,700
13,600 | 21,300-24,800
21,300-25,900
11,600-14,500 | 42
42
42 | = | Ξ | = | +9.5
+13.1
-10.9 | -5.5
-53.5 | Ξ | -6.2
-5.2
-31.0 | | \$4001 12641 | Rome
Pypephetyhoxoval mald | 7 <u>7</u>
21c | 1.02
0.93
1.02
0.94 | 7:1
2:1
1:2 | 1.5 | 11 | 1. E | | 25,809
21,500
23,500
19,400 | 21,970-29,600
18,000-24,900
20,000-26,600
16,400-21,300 | 14
14
15 | 29,700
19,700
22,200
15,600 | 70,900-R7,000
15,900-73,900
19,000-74,400
13,600-19,100 | #5
#5
#5 | = | | = | -19.8
-12.3
-27.6 | -20.2
-10.1
-36.0 | = | | - All penels prepayed by pressing at 150°F for \$4 hours, using metal bers to cardrol thickness. - b. Change in strength for the unaged, oven-fog-aged, and roof-aged phosis, respectively, is calculated to the basis of the alreagets at the unaged, even-fog-aged, and roof-aged panels, respectively, sade sitient estalysts. - e. Change in strength salesiated on the basis of the strength of the unaged pinel. TABLE IX. - THE PITCH OF TABLES AND THE POLICE AND PARTY AND PARTY OF PRESCRIPT OF PRESCRIPT AND PARTY OF | | | | Domá | Htions | | | | | | | | | | | | | | | | Character Day | pe in St
in Cat | ALIENT. | Day to | _ i | |---------------------|--------------------------------------|---------------------|----------------------------|--|------------------------------|------------------|--------------------------|-----------------|--|------------------------|---|--|--------------------------------------|--|--|----------------------|---|--|----------------------------|---------------|-----------------------------|------------------------|----------------|--------| | Department of Polis | Catalyer
sided to | Classi-
fication | 100 | Out to | Demonity
(s/es/) | Menia
Content | | Unaged
Panel | Pag-
Aged
Zame) | Roof-
Aged
Panel | Average 11 Maria | ALBER. | No. of
Speci- | Plant
Ivere | ral byraneth | No. of
Speci- | Average
Liverage
(De/Aug) | ral treams | Fe, cif
Space- | 787 | Page
Page
1 | Roof-
land
Famil | | i
L | | Somited RC-2176 | 104 Dares 7472 | 7
7 | 300
Room
150
150 | 0:45
P0:00
20:00
P0:00 | 0.美
0.制
0.务 | N THE | i i | 10 | 4.5
5.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3 | 3.7
2.6
2.8 | 28,400
18,400
18,500
22,100 | 22,100-26,
15,400-19,
15,600-23,
19,900-23, | 000 15
700 12
000 16
600 16 | 21,900
12,900
13,500
11,800 | 18,300-24,100
8,703-15,300
11,600-15,600
9,400-13,400 | 15
16
16 | 14,200
9,600
9,000
8,700 | 11,500-16,000
6,000-11,400
6,000-11,000
6,500-9,100 | 15
18
16
16 | 1875 | 7 | T | 4 | • | | Sebelite
NG-3931 | No. 2
15 12-11753
1.25 12-2447 | ļ | 300
150
(Rose
150 | 0130
20100
20100)
2100) | 0.97
0.94
0.90 | 77
72 | 1.5 | 1.5 | 1.7 | }
} | 23,600
21,500
17,300 | 16,100-30,
19,400-15,
15,800-19, | 000 15
000 16
900 12 | 17,500
17,600 | 23,300-26,300
14,300-20,600
5,800-13,600 | 15
16
12 | 10,700
8,000
9,600 | 9,100-12,609
7,100-9,000
4,500-11,500 | 15
16
18 | - 8
- 27 | -5) | 7 | -13 -23 | į | | | 166 Bures 7422 | , | Room | | 1,02 | 43 | 1.8 | 1.6 | 3.0 | 3.0 | 14,100 | • • • • • • | | 12,800 | | | 7,800 | 6,900-9,200 | 16 | -23 | -44 | -27 | - t9 -5 | 7 | | Dares 12041 " | 107 Bares 421 | N
N | 300
200
150 | #150
#150 | 0.97
1.62
0-57 | 3 | 1,3 | 1.4 | 2.0
1.9 | 1.7 | 21, 500
11, 500
19, 500 | 27,400-26,
19,900-26,
17,300-20, | 70 15
800 14 | 27,500
28,500
13,500 | 21,300-27,300
15,300-27,700
10,100-15,300 | 15 | 17,600
11,000
9,600 | 15,300-21,000
7,300-14,500
8,400-10,500 | 15
16
16 | 7 | 45 | -2 | 70 7 | Š | | likelie 10-1174 | ## 11/5
11/5
11/5 |
#
#
| 150
150
150
Moon | 0145
20100
3100
3100
20100 | 0.95
0.89
0.89
0.88 | X Suppr | 1,9
1,2
2,7
1,9 | 3.0 | | 7 | 21, 600
21, 700
21, 700
10, 600
15, 600 | 22,100-85,
20,900-04,
15,100-24,
17,100-26,
15,400-19, | 900 15
900 16
900 16
900 16 | 21,900
20,700
17,000
17,200
12,900 | 18,700-pt,100
17,500-pt,900
11,700-zp,100
15,100-19,600
8,700-15,300 | 15
16
16
16 | 14, 500
9, 500
9, 400
8, 700
9, 800 | 11,500-16,000
6,700-10,500
7,100-11,400
7,500-9,700
6,000-11,400 | 15
16
16
16
12 | -12 | - 5
- 12
- 13
- 13 | in the second | 7777 | ļ
ļ | - a. Choings in strungth for the sumped, even-frag-maped, and restricted possils, perpendictly, in calculated on the hart at his strungth of the wanged, even-frag-daped, and restricted satisfactually, satisfactually, and extinct satisfactually. - h. Change in strongth calculated on the beats of the strongth of the unaged parels - a. This resis model not ours with enterlysh XX-11765 at 180°P, TABLE IIL-EFFECT OF CATALYSTS ON FLEXURAL STRENGTH OF BIRCH VENEERS & | | | | DH | | Flexural Strength | | | | | | | |---------------------------------------|---|------------------------------------|--|---------------------------------|--|---|----------------------------|-----------------------------|--|--|--| | Catalyst | Normality
of
Solution | Original
Solution | Folution
After
Wood
Immersion | Ground
Wood | Average
(1b/in ²) | Range
(lb/in²) | No. of
Speci-
mens | Loss in
Strengthb | | | | | Hydrochloric acid | 1.0
0.1
0.01
Weter
Untreated | 0.12
1.1
2.0
5.5
wooda | 0.03
1.4
3.1
5.2 | 1.54
4.66
5.60 | 9,800
14,900
18,100
18,700
20,500 | 5,600-12,800
13,000-16,500
16,800-18,900
17,100-20,000
19,100-22,700 | 10
12
12
12
12 | 52.2
27.3
11.7
8.8 | | | | | Nitric acid | 1.0
0.1
0.01
Water
Untrested | 0.1
1.1
2.0
5.5
wood | 0.21
1.4
3.4
4.9 | 1.6
2.4
5.3
5.8 | 12,300
17,100
20,400
20,700
21,200 | 10,600-13,600
16,100-16,600
18,900-22,700
18,900-22,200
19,100-22,900 | 12
12
12
12 | 42.0
19.3
3.5
2.4 | | | | | Sulfuric acid | 1.0
0.1
0.01
Water
Untreated | 0.33
1.3
2.1
5.6
wood | 0.34
1.4
3.1
5.5 | 1.54
2.4
5.5
5.5 | 12,300
16,400
19,200
19,300
19,900 | 10,700-13,400
14,700-17,700
17,800-20,800
18,500-20,400
18,900-21,600 | 12
13
15
15 | 36.2
17.6
3.5
3.0 | | | | | Phosphoric acid | 3.0
0.3
0.03
Water
Untreated | 0.5
1.6
2.2
5.5
wood | 0.88
1.8
3.2
6.0 | 1.8
2.4
5.5
5.5 | 15,000
18,000
18,600
18,500
20,000 | 13,900-16,700
16,600-19,200
15,600-20,100
16,800-20,800
17,600-23,400 | 12
12
12
12 | 25.0
10.0
7.0
9.2 | | | | | Hypophosphorous acid | 1.0
0.1
0.01
Water
Untreated | 0.6
1.3
2.2
5.5 | 0.72
1.6
3.1
5.2 | 1.52
4.0
4.7
4.9 | 14,700
19,300
19,900
19,800
20,500 | 12,900-16,900
17,400-20,400
18,900-20,700
18,100-20,300
19,500-21,200 | 12
12
12
12 | 28.3
5.99
3.4 | | | | | Benzenesulfonic acid | 1.0
0.1
0.01
Vater
Untreated | 0.1
1.1
2.0
5.5
wood | 0.18
1.2
3.2
5.4 | 1.1
2.1
3.8
5.0
4.9 | 10,400
16,100
18,900
18,800
20,400 | 9,600-11,300
13,900-17,800
16,900-20,400
17,300-21,000
18,900-22,700 | 12
12
12
12 | 49.0
21.1
7.4
7.8 | | | | | Trichloroacetic acid | 1.1
0.11
0.01
Water
Untreated | 0.1
1.2
2.1
5.9
wood | 0.56
1.1
2.7
5.0 | 1.2
2.4
5.2
5.3 | 14,000
17,100
17,300
18,200
19,300 | 12,400-15,100
15,600-19,400
15,400-19,100
16,500-20,200
17,000-21,400 | 12
12
12
12 | 27.5
11.4
10.4
5.7 | | | | | Witranilic aoid | 1.0
0.2
0.02
Water
Untreated | 0.42
1.0
1.9
5.5 | 0.50
1.6
2.7
5.0 | 1.8
2.4
3.5
5.3
5.6 | 16,600
18,800
18,900
19,400
20,600 | 15,500-17,800
18,200-19,900
18,100-20,400
17,700-20,000
19,700-21,200 | 12
12
12
12
12 | 19.4
5.7
5.2
5.5 | | | | | Sodium hydroxide | 0.1
0.01
Water
Untreated | 12.9
12.0
5.5
wood | 10.2
6.0
5.0 | 7.0
6.2
5.4
5.7 | 20,200
20,100
20,100
21,500 | 15,700-22,300
17,900-22,300
15,500-21,700
20,700-22,400 | 12
12
12
12 | 6.0
6.5
 | | | | | Tetraethanol
amronium
hydroxide | 0.44
0.22
Water
Untreated | 12.4
12.1
5.6
wood | 11.7
5.5
5.0 | 5.5
7.1
5.1
5.5 | 16,300
19,000
20,100
20,400 | 12,500-17,700
17,700-21,100
18,200-21,300
18,900-22,500 | 12
12
12
12 | 20.1
6.9
1.5 | | | | a. A birch veneer of 0.1-inch thickness was cut into the required number of specimens for treatment with a single catalyst. The specimens for immersion in each concentration of the catalyst for 3 days were selected so as to be representative of the whole veneer. Two similar sets of specimens from the same veneer were tested untreated and after immersion in distilled water for 3 days, respectively. b. The percentage loss in flexural strength is calculated on the basis of the strength of the untreated wood from the seme veneer. 5 3 2 1 떮 Figure 1.- Titration of Penacolite 0-1151 with various acids. Figure 2.- Titration of Penacolite G-1131 with various acids Figure 3.- Titration of phenol and resorcinol resins with sodium hydroxide. Figure 4.- Titration of Cascophen 17-67 with various scide. Figure 5.- Effect of pH on flexural strength of birch plywood bonded with urea-formaldehyde resins. Figure 6.- Effect of pH on impact strength of birch plywood bonded with urea-formsldehyde resins. Figure 7.- Effect of pH on shear strength of birch plywood bonded with urea-formaldehyde resins. Figure 8.- Effect of oven-fog-aging on flexural strength of birch plywood bonded with Penacolite G-1131, using various acid catalysts. Figure 9.- Effect of various acid catalysts on flexural strongth of oven-fog-aged birch plywood bonded with Penacolite G-1131. Figure 10.- Effect of oven-fog-aging on flexural strength of birch plywood bonded with Cascophen LT-67, using acidic and basic catalysts. Figure 11.- Effect of various catalysts on flexural strength of oven-fog-aged birch plywood bonded with Cascophen LT-67. Figure 11.- Effect of various catalysts on flexural strength of oven-fog-aged birch plywood bonded with Cascophen LT-67. Figure 12.- Effect of various catalysts on flexural strength of birch plywood bonded with phenolic resins. (Number above each column indicates pH value of unaged panel.) Figure 13.- Effect of catalyst (3.2% %K-2997) on flexural strength of oven-fog-aged birch plywood bonded with various phenolic resins. Figure 14.- Effect of various acids on flexural strength of birch wood.